Max Time: 1.5	Hours	<u> </u>	<u> </u>	Max Marks :127
1. If (4x + 3): (9x+10)	is the triplicate	ratio of 3:4, 1	hen the value of	of x is:
(A)9	(B)7	(C)6		(D)5.
2. If 2s: 3t is the dup (A) p ² = 6st (B) p =		—p: 3t—p. th c = 3st (D) n		
3. If a : b = 2 : 3 and (a) (i) 10:21 (ii (c) (i) 10 : 12 (i) 10 : 15 : 21		D:15 (ii) 10:	15 : 21
4. Divide 581 among (a) Rs.245, 19			10, 160, 240	
(c) 200, 250,		(d) Non		
is Rs.390, find the nu		f each kind.		5 : 6 : 7. If the total amo
	litres, the ratio of nd the ratio of m (b) 2 : 1		r in the new mi	2 litres of water is addeo xture. None
7. What must be add (A) 7	ed to the terms o (B) 9	f the ratio 3 (C) 1		qual to 3 : 4, D) 17.
reducing it t	o 1:4 is:			ns of the ratio 9:33
(A) 15	(B) 5	(C) 1	(D) ho	ne of these.
	wo persons are i aves Rs. 50 per d		*	aily expenses are in the ra s. are:
	3) (50, 40)	(C) (400, 50	-	ne of these.
10. Two numbers are numbers are:	in the ratio 2: 3	such that the	e differences o	f their square is 125. The
(A) 15, 10	(B) 10), 15	(C) 2, 18	(D) 18, 12
11. The fourth prope	ortional to 3, 5, a	nd 21 is :		
(a) 35	(b) $\frac{7}{5}$	(c) $\frac{5}{7}$	(d)	12.6
12. Mean proportion (a) 17.5	(b) 12	(c) 14	(d)	16
13. The third propor	tional to 12 and 2	24 is:		

	-	Studies For Pr ur quest for quality educ				
14. A fraction bears the same ratio to $\frac{1}{27}$ as $\frac{3}{7}$ does to $\frac{5}{9}$. The fraction is:						
		(c) $\frac{45}{7}$				
15. What should be each other?	subtracted from 6	o, 18, 41 and 137 s	so that they become proportionate to			
(A) 1	(B) 1/2	(C) 2	(D) 1/3			
16. If 2x = 3y = 4z, (a) 2 : 3 : 4	-	: 2 (c) 6: 4	1 : 3 d)none of these			
	(b) 3 : 2	o ²) : (a ² + b ²) equals (c) 5 : 13	s: (d) 13 : 5			
18. If a + b: \sqrt{ab} = 4: 1, t	hen $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$ is					
(a) 7 : 4	(b) 4 : 1	(c) 5 : 3	(d) None of these			
19. The value of x for $(x) = 2$						
(a) 2 20. If 9 ^x - 10.3 ^x + 9			(d) –1			
(a) 2 or 0 21. The value of $\left(\frac{x^{4}}{x^{4}}\right)$ (a) 0	(b) 1 or 3 $\frac{a}{b} = \int_{a}^{(a+b)} \times \left(\frac{x^{b}}{x^{c}}\right)^{(b+c)} \times \left(\frac{x^{b}}{x^{c}}\right)^{(b+c)$	(c) 1 or 9 $\left(\frac{x^{c}}{x^{a}}\right)^{(c+a)}$ is:	(d) 1 or -2			
22. The expression:		(c) x^{a+b+c} $\frac{1}{x^{(b-c)} + x^{(a-c)}}$ is equ	(d) 1 al to:			
	(b) 1	(c) 0	(d) None of these			
23. If $x = y^{a}$, $y = z^{b} a$ (a) 4		e value of abc is: (c) 2	(d) 1			
24. $\left(\frac{1}{1+a^{n-m}}+\frac{1}{1+a^{m-n}}\right)$ is equal to :						
(a) 0	(b) 1	(c) $\frac{1}{2}$	(d) a ^{m + n}			
25. The value of $\log_5\left(\frac{1}{625}\right)$ is :						
(a) 4	(b) $\frac{1}{4}$	(c) –4	(d) $-\frac{1}{4}$			
. 26. If a, b, c are thr (a) (log b) ²	ree consecutive in (b)log b	tegers, then log (a (c) 2 log b	ac + 1) has the value (d) log 2b			
2	CA Foundation	Maths Mock	k Test SSP			

Systematic Studies For Professionals

(Where your quest for quality education ends)

- 27. A man took a loan from a bank at the rate of 12% p.a. simple interest. After 3 years he had to pay Rs. 5400 interest only for the period. The principal amount borrowed by him was: (A) Rs. 2000 (B) Rs. 10,000 (C) Rs. 15,000 (D) Rs. 20,000
- 28. Two equal sums of money were invested, one at 4% and the other at $4\frac{1}{2}$ %. At the end

of 7 years the simple interest received from the latter exceeded that received from the former by Rs.31.50. Each sum was:

(A) Rs. 1,000 (B) Rs. 500 (C) Rs. 750 (D) Rs. 900

29. What sum will amount to Rs. 5,200 in 3 years at the same rate of simple interest at which Rs. 3.000 will amount to Rs. 4,800 in 6 years ?

(A) Rs.4000 (B) Rs.4500 (C) Rs.4800 (D) Rs.4900

- 30. Rahul invested Rs. 70000 in a bank at the rate of 6.5% p.a. simple interest rate. He received Rs. 85925 after the end of term. Find out the period for which sum was invested by Rahul.
 - (A) 2.5 yrs (B) 3.5 yrs (C) 3 yrs (D) 4yrs.
- 31. A sum of money lent at compound interest for 2 years at 20% per annum would feRs. 482 more, if the interest was payable half-yearly than if it was payable annually . The sum is :

(A) Rs. 10,000 (B) Rs. 20,000 (C) Rs.40,000 (D) Rs. 50,000

32. If the simple interest on a sum of money for 2 years at 5% per annum is Rs. 50, what is the compound interest on the same sum at the same rate and for the same time ?

(A) Rs. 51.25 (B) Rs. 52 (C) Rs. 54.25 (D) Rs. 60

- 33. The compound interest on Rs. 16,000 at 20% per annum for 9 months, compounded quarterly is :
 - (A) Rs. 2422 (B) Rs. 2522 (C) Rs. 2322 (D) Rs. 2622

34. The effective rate equivalent to nominal rate of 6% compounded monthly is : (A) 6.05 (B) 6.16 (C) 6.26 (D) 6.07

- 35. At the beginning of each period consisting of six months, Rs. 500 is deposited into savings account that pays 5% compounded half-yearly. Find the balance in the account at the end of 5 years. [Given : $(1.025)^{11} = 1.3121$]
 - (a) Rs.5724 {b) Rs. 5742(c) Rs.5472 (d) Rs.5427
- 36. How much amount is required to be invested every year so as to accumulate Rs.
 3,00,000 at the end of 10 years if interest is compounded annually at 10% ? [Given :
 (1.1)¹⁰ = 2.5937]

(a) Rs. 18,823.65 (b) Rs. 18,828.65(c) Rs. 18,832.65{d) Rs. 18,882.65

Systematic Studies For Professionals

(Where your quest for quality education ends)

37. A company anticipates capital expenditure of Rs. 50,000 for new equipment in 10 years. How much should be deposited annually in a sinking fund earning 10% per year compounded annually to provide for the purchase ? [Given : $(1.1)^{10} = 2.5937$]

(a) Rs. 3,871.27 (b) Rs. 3,371.27(c) Rs. 3,317.27 (d) Rs. 3,137.27

- 38. Rs. 5000 is paid every year for 10 years to pay off a loan. If interest rate be 14% per annum compounded annually, what is loan amount ? [Given : (1.14)¹⁰ = 3.70722]
 - (a) Rs.26801 (b) Rs.26,108(c) Rs. 26,081 (d) Rs. 26,810

39. A person borrows two lakh rupees on the understanding that it is to be paid back in 6 equal instalments at intervals of six months, the first payment to be made six months after the money was borrowed. Calculate the value of each instalment if the money is worth 5% per annum. [Given: $(1.025)^6 = 1.1596$]

(a) Rs. 33,628.32 {b) Rs. 33,826.32(c) Rs. 36,238.32 (d) Rs. 36,328.32

40. An equipment costs Rs. 46,000 and its effective life is estimated to be 10 years. A sinking fund is created for replacing the equipment at the end of its effective life when it scrap realises a sum of Rs. 6,000 only. Calculate the amount which should be provided every year, for the sinking fund, if it accumulates at compound interest 7% per annum. [Given :(1.07)¹⁰ = 1.9671]

(a) Rs. 2395.25 (fc) Rs. 2,895.25(c) Rs. 2859.25 (d) Rs. 2,359.25

- 41. Find the present value of an annuity due of Rs. 6000 per year for 4 years, if money is worth 4% per annum. [Given: $(1.04)^{-3} = 0.8889$].
 - (a) Rs. 30,220 (b) Rs. 30,202(c) Rs. 30,022 (d) Rs. 30,000
- 42.. Find the present value of a sequence of annual payments of Rs. 2000 each, the first being made at the end of 4 years and the last at the end of 10 years, if money is worth 6% compounded annually. [Given : $(1.06)^7 = 1.5036$]
 - (a) Rs. 9,221 (b) Rs. 9,212 (c) Rs. 9,122 (d) Rs. 9,206
- 43. An overdraft of Rs. 50,000 is to be paid back in equal annual instalments over a period of 20 years. Find the value of the instalment, if interest is compounded annually at 14% per annum. [Given : (1.14)^{"20} = 0.072762] [C.A.P.E.-I (Nov.) 2002]

(a) Rs. 7,975.30 (b) Rs. 7,459.30 (c) Rs. 7,547.30 (d) Rs. 7,549.30

44. A loan of Rs. 1,000 to be paid in 5 equal annual payments, interest being at 6% p.a. compounded annually and first payment being made after a year. Find the value of the instalment. [Given: $(1.06)^5 = 1.3382$]

(a) Rs. 239.40 (b) Rs. 237.40 (c) Rs. 237.20 (d) Rs. 235.40

45. The present value of Rs.10000 due in 2 years at 5% p.a. compound interest when the interest is paid on yearly basis is:

		udies For Profess				
(A) Rs. 9070	(B) Rs. 9069 (C	est for quality education er) Rs. 9061	(D) Rs. 9060			
46. The present va interest is paid on h		n 2 years at 5% p.a.	compound interest when the			
(A) Rs.9070	(B) Rs.9069 (C)	Rs.9061 (D)	Rs.9060			
his minor sons Ton	n Dick and Harry age ige 25 years. The rate	d 9 12 and 15 years	be divided in such a way that should each receive equally 5% how mush each son receive			
(A) 50000	(B) 51994	(C) 51894	(D) 51794			
48. In how many ye	ars will a sum of mor	ney double at 5% p.a	. compound interest?			
(A) 15 years 3	3 months (B) 14 ye	ars 2 months				
(C) 14 years 3	3 months (D) 15 ye	ears 2 months				
to replace it by a ne of Rs.25000. what a	49. A machine costs Rs.520000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of Rs.25000. what amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a.?					
(A) 16000	(B) 16500	(C) 16050	(D)16005			
50. Raja aged 40 wishes his wife Rani to have Rs.40 lakhs at his death. If his expectation of life is another 30 years and he starts making equal annual investments commencing now at 3% compound interest p.a. how much should he invest annually?						
(A) 84448	(B) 84450	(C) 84449	(D) 84447			
51. Appu retires at 60 years receiving a pension of 14400 a year paid in half-yearly installments for rest of his life after reckoning his life expectation to be 13 years and that interest at 4% p.a. is payable half yearly. What single sum is equivalent to his pension?						
(A) 145000	(B) 144900 (C	:) 144800 (D)	144700			
52. The letters of the words CALCUTTA and AMERICA are arranged in all possible ways. The ratio of the number of there arrangements is:						
(a) 1:2	(b) 2:1	(c) 2:2	(d) N.O.T			
 53. The number of arrangements in which the letters of the word MONDAY be arranged so that the words thus formed begin with M and do not end with N is: (a) 720 (b) 120 (c) 96 (d) N.O.T 						
different ag		t mango always goe	sizes among 8 persons of es to be younger assuming that			
(a) 8!	(b) 5040	(c) 5039	(d) N.O.T			
5	CA Foundation	Maths Mock Test	SSP			

Systematic Studies For Professionals (Where your quest for quality education ends)

55.	The total number o (a) 10(9!)	f 9 digit number (b) 9(9!)	rs of diffe	erent digit (c) 8(9!)	s is:	(d) N.O.T
56.		ingements of 10	different		aken 4 at	a time in which one
	(a) 2015	(b) 2016		(c) 2014		(d) none
57.	The number of perr thing never occu		different	things ta	ken 4 at	a time in which one
58.	(a) 3020 The number of way (a) 2500	(b) 3025 s in which 8 dift (b) 2520	ferent be	(c) 3024 ads be str (c) 2250	rung on a	(d) none a necklace is: (d) N.O.T
5 9 .	The total number o line such that n	f ways in which		nd four '—	-' signs ca	
	(a) 7!/3!	(b) (6! X	7!)/3!	(c) 35	(d) N.	
60.	The number of stra them being on tl		ned by jo	ining 16 p	points on	a plane, no twice of
	(a) 120	(b) 110		(c) 210		(d) N.O.T
61.	61. At an election there are 5 candidates and 3 members are to be elected. A voter is entitled to vote for any number of candidates not greater than the number to be elected. The number of ways a voter choose to vote is:					
	(a) 20	(b) 22		(c) 25		(d) N.O.T
62.	Every person shake shakes is 66. Th			•		e total number of hand
	(a) 11	(b) 12		(c) 13		(d) 14
63.	3. The number of parallelograms that can be formed from a set of four parallel lines					
	intersecting ano (a) 6	(b) 18	e parallel	(c) 12		(d) 9
64.	8 points are marked obtained by join			of a circle.	The num	nber of chords
	(a) 25	(b) 27		(c) 28		(d) N.O.T
65.	How many 4-digit r 3, 4, 5, 6, 7, 8 a		formed	with no d	igit repea	ted by using the digits
		(b) 720	(c) 840		(d) 660	
66.	How many 3-digit e digits, 0, 1, 2, 3,		an be for	med with	no digit	repeated, by using the
	•	50 (c)	52 (d)		56	

(a)48 (b) 50 (c) 52 (d) 56

Systematic Studies For Professionals (Where your quest for quality education ends)							
67.	7. The number of positive integers greater than 6000 and less than 7000 which are divisible by 5, with no digit repeated, is:						
	(a) 28	(b) 56	(c) 112	(d) 84			
68.			T and ending wit he word 'TRIANGL	th E can be made (with no letter .E'?			
	(a) ⁸ P ₆	(b) 720	(c) 1440	(d) 722			
69.	arranged on a		ep all the books o	s. In how many ways can they be f the same language together?			
	(a)720 (c)870		(b) 120 (d) (6 × 720 × 2	24 × 120)			
	. ,						
70.		ys can the letter cupy only odd po		ACHINE' be arranged so that the			
	(a)(4 × 7!)	(b) 576	(c) 288	(d) None			
71.	How many words letter C once?	can be formed u	using the letters A	thrice, the letter B twice and the			
	(a)60 (b)	120	(c) 90	(d) 6			
72.	2. How many 4 digit numbers can be formed by using the digits 1, 2, 3, 4, 5, 6 when a digit may be repeated any number of times in each number?						
	(a) 4 ⁶ (b)	64 (c)	720	(d) 1440			
73.	Out of 7 consona		s, how many wor	ds of 3 consonants and 2 vowels			
	(a)1050	(b) 330	(C) 25200	(d) 6300			
74.	How many diagor	hals are the there	e in a polygon of n	sides?			
	(a) $\frac{1}{2}$ n (n – 1)	(b) ¹ / ₂ n (n −2))				
	(c) $\frac{1}{2}$ n (n + 1)	(d) $\frac{1}{2}$ n (n -	3)				
75.	A polygon has 54	diagonals. Num	ber of sides of this	s polvaon is:			
	(a)12	(b) 15	(c) 16	(d) 9			
76.	5	5	t eleven be select team must includ	ted from 17 players, in which 5 le 2 bowlers?			
	(a)550	(b) 1100	(c) 1650	(d) 2200			
77.	How many triang	les can be drawn	n through n given	points on a circle?			
	(a) ⁿ C ₃		(c) n	(d) None			

7

Systematic Studies For Professionals (Where your quest for quality education ends) 78. If (k + 1), 3k and (4k + 2) be any three consecutive terms of an A.P., then the value of k is – (a) 3 (b) 0 (d) 2 (c) 1 79. The 5th and 13th term of an A.P. are 5 and –13 respectively. The first term of the A.P. is (b) 14 (c) –15 (a) 3 (d) 9 80. Which term of the A.P. 64, 60, 56, 52, is zero? (c) 15th (a) 16th (b) 17th (d) 14th 81. If the mth term of an A.P. is (1/n) and the nth term is (1/m), then its (mn)th term is – $(d)\frac{1}{mn}$. (b) – 1 (a) – mn (c) 1 82. Insert 4 arithmetic means between 4 and 324. (a) 68, 136, 196, 260 (b) 68, 132, 196, 260 (d) N.O.T (c) 68, 132, 169, 260 83. Find the sum of the series 1 + 3 + 5 + 7 + + 61(a) 961 (b) 916 (c) 691 (d) 619 84. If 1 + 6 + 11 + 16 + ... + x = 148, then the value of x is -(d) 48 (b) 36 (a) 8 (c) 42 85. The sum of all two-digit numbers is – (a) 4750 (b) 4895 (c) 4905 (d) None 86. Find the sum to n terms of the series: $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots$ (a) $\frac{1}{n+1}$ (b) $\frac{1}{n-1}$ (c) $\frac{n}{n+1}$ (d) $\frac{n}{n-1}$ 87. Find the nth term of the series whose sum to n terms is $5n^2 + 2n$. (b) 10 — 3n (a) 10n — 3 (c) 3n —10 (d) none If a, b, c be the sums of p, q, r terms respectively of an A.P. the value of 88. $\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) iS$ (B) 1 (C)-1 (A) 0 (D) None 89. The sum of n terms of two A.Ps are in the ratio of (7n - 5) / (5n + 17). Then the _____ term of the two series are equal. (A) 12 (B) 6 (C) 3 (D) None 90. The derivatives of the function $\sqrt{x+\sqrt{x}}$ area) $\frac{1}{2\sqrt{r+\sqrt{r}}}$ b) $1 + \frac{1}{2\sqrt{r}}$

c) $4\log x - 1 + k$ d) None of these.

100.The integral of $1/[x(\log x^2] \text{ w.r.t } x, \text{ is:}$

Systematic Studies For Professionals (Where your quest for quality education ends)				
a) $1/x\log+k$	b) $x^4 / 16(4\log x - 1) + k$			
C) $4 \log x - 1 + k$	d) none of these.			
102. Integral of $(e^{3x} + e^{-3x})/e^x$ is:				
a) $(e^{2x}/2) - (e^{-4x}/4) + k$	b) $e^{2x} - e^{-4x} + k$			
C) $(e^{2x}/2) + (e^{-4x}/4) + k$	d) None of these.			
103. $\int \frac{x^2 dx}{(x+1)}$ is:				
a) $(x^2/2) - x + \log x+1 + k$	b) $(x^2 - 1) + \log x + k$			
C) $(x^2/2) - x + \log x+1 + k$	d) none of these			
104 .Evaluate $\int \frac{(2-x)e^x}{(1-x)^2} dx dx$ and the va	lue is:			
a) $\frac{e^x}{1-x} + k$ b) $e^x + k$ c) $1/1 - k$	x+k d) none of these.			
105. Evaluate $\int \left(\frac{e^x - e^{-x}}{e^x + e^x}\right) dx$ dx and the	value is:			
a) $2\log e^x + e^{-x} + k$	b) $\log e^x + e^{-x} + k$			
C) $\log e^{x} - e^{-x} + k$	d) none of these.			
$106. \ \int \frac{x-1}{\sqrt{x+4}} dx. =$				
a) $(2/3)(x+4)^{3/2} - \sqrt{(x+4)} + k$	b) $(2/3)(x+4)^{3/2}-10\sqrt{(x+4)}+k$			
C) $(2/3)(x+4)^{3/2} - 5\sqrt{(x+4)} + k$	d) None of these.			
$107.\int \frac{e^x dx}{e^{2x} + 5e^x + 6} =$				
a) $log \left \frac{e^{x} + 2}{e^{x} + 3} \right + c$ b) $2 log \left \frac{e^{x} + 3}{e^{x} + 3} \right + c$	c c) $\log \left \frac{e^x + 3}{e^x + 2} \right + c$ d) none of these.			
108. $\int \frac{dx}{x(x^4+1)} =$				
a) $\frac{1}{4}\log\left \frac{x^4}{x^4+1}\right + c$ b) $\log\left \frac{x^4}{x^4+1}\right + c$	c) $\frac{1}{4} \log \left \frac{x^4 + 1}{x^4} \right + c$ d) none of these			

10

	Systematic Studies For Professionals (Where your quest for quality education ends)					
109.	$\int \frac{dx}{1 - e^x} =$					
	a) $\log \left \frac{e^x}{1 - e^x} \right + c$ b) $2 \log \left \frac{1 - e^x}{e^x} \right + c$	c C) $\log \left \frac{1 - e^x}{e^x} \right + c$ d) none of these				
110). The set {0} is called a					
	null set (b) finite set (c) sing I. (The set {x ; 0 < x < 5} represen (a) {0, 1, 2, 3, 4, 5}	leton set (d) both (b) and (c) ts the set when x may take integral values only (b) {1, 2, 3, 4}				
	(c) (1, 2, 3, 4, 5)	(d) None of these,				
112.	If A= {1, 3, 7, 8) and B = (2, 4, 7	, 8), then				
	(a) $\mathbf{A} \subset \mathbf{B}$	(b) $\mathbf{B} \subset \mathbf{A}$				
	(c) A and B are disjoint	(d) A and B are not disjoint				
113.	If E = {1,2,3,4,5,6,7,8,9} The sul (a) {5, 6, 7, 8, 9} (b) {6,7,8,9}	oset of E satisfying 5 < x < 10 is (c) {7,8,9} (d) None of these				
114.	If A = { 1, 2, 3, 5, 7} and B = {1, (a) 3 (b) 4	3, 6,10,15}. Cardinal number of A-B is (c) 6 (d) none of these				
115.	 15. On a survey of 100 boys it was found that 50 used white shirt 40 red and 30 blue. 20 were habituated in using both white and red shirts 15 both red and blue shirts and 10 blue and white shirts. Find the number of boys using all the colours. (A) 20 (B) 25 (C) 30 (D) None 					
116.						
	$n(F \cap S \cap M') = 16$. Determine	the complaints about all the three.				
	(A) 6 (B)53	(C)35 (D) None				
117	117. The solution for the pair of equations $\frac{1}{16x} + \frac{1}{15y} = \frac{9}{20}$, $\frac{1}{20x} - \frac{1}{27y} = \frac{4}{45}$ is given by					
	(a) $\left(\frac{1}{4}, \frac{1}{3}\right)$ (b) $\left(\frac{1}{3}, \frac{1}{4}\right)$	(c) (3, 4) (d) (4, 3)				
118	, ,	$+\frac{3}{10}$ and $3xy=10$ (y -x). The values of x and y are				
	given by the pair. (a)(5, 2) (b) (-2, -5)	(c) (2, – 5) (d) (2, 5)				

		Systematic				
119.	(Where your quest for quality education ends) 119. On deduction of 1 from the numerator of a fraction it becomes equal to 2, however if 2 is deducted from the denominator it becomes equal to 1. T number is					
	(a)5/9	(b) 7/9	(c) 7	//8	(d) 3/5	
120.	double of a added up to	nother numbe o 19. The numl	r. If 1/5 of bers are	the smaller	oted it is short by 1.8 from the is added to 1/8 of the greater it	
	(a) (55,64)	(b) (76	-	(c) (55,44)		
121.10 years	ars ago , X is	older than Y b	y 5 years,	how much o	lder X will be than Y after 15	
J.	(a)10 years	(b) 15	years	(C) 5 years	s (d) 20 years	
122. Th		ne equation 4 (b) 1, 3			(d) 0, 2	
123. lfα,β	are the roc	ots of $2x^2 - 4x$	– 1 = 0, fi	nd value of	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$	
(a)-22		(b) 22	(c) 1	1	(d) None of these	
124. If α,β	are the roo	ots of $x^2 + 2x$ -	+ 1 = 0, th	en the equa	tion whose roots are $\frac{1}{2}$ and	
$\frac{1}{\beta}$, is					α	
(a) x ² +	$\frac{1}{x} + \frac{1}{x} = 0$	(b) $x^2 + x +$	$\frac{1}{2} = 0$ (C) x	$x^{2} + \frac{1}{x} + 1 = 0$	(d) $x^2 + 2x + 1 = 0$	
		of $\sqrt{6x-x^2} \ge 0$ is	_	2		
(a) x	≥6	(b) 0< x <6				
(c) 0	$\leq x \leq 6$	(d) x > 6				
126. Soluti	on of $-x^2 - 13$	3x - 36 > 0 is				
(a) x2	> 4	(b) x > 9				
(c) 4	< x < 9	(d) (a) or (b)				
127. The sh	aded region	represents:				
K		r.y=2				
X' 4 0 Y		×				
(a) x	$-y \le 2, x + 1$	$2y \leq 8, x, y \geq 0$)	(b)	$x - y \ge 2, x + 2y \le 8, x, y \ge 0$	
(c) x	$-y \le 2, x + 1$	$2y \ge 8, x, y \ge 0$)	(d)	none of these.	